

Основные определения. Классификация осложнений и аварий в бурении скважин

Тема №1 Основные определения

Что такое «осложнение» в бурении?

Осложнение — нарушение технологического процесса бурения скважин, происшедшее при соблюдении требований технического проекта и правил ведения буровых работ, вызванное явлениями горно - геологического характера.

При осложнениях бурение скважины возможно, но необходимо проведение специальных мероприятий.

Что такое «авария» в бурении?

Авария — нарушение технологического процесса бурения скважины, вызванное потерей подвижности колонны бурильных труб, или её поломкой с оставлением в скважине элементов колонны, а так же различных предметов, *для* извлечения которых требуется проведение специальных работ, не предусмотренных проектом.

Тема №2 Классификация осложнений в бурении

Классификация осложнений

Осложнения

Газонефтеводопроявления

Поглощения **бурового раствора**

Неустойчивость стенок скважины Осыпи и обвалы

Ползучесть

Желобообразование

Растворение и растепление пород

Тема №3 Классификация аварий в бурении

По источнику

Буровое оборудование

Природные воздействия

Субъективный фактор

Самонадеянность

Грубые нарушения

Небрежность

Влияющие факторы

Технические

Технологические

Организационные

Геологические

Человеческий фактор

Классификация аварий ^{Леки} Влияющие факторы (геологические)

Кратер Дарваза в Турменистане – результат сооружения разведочной скважины над огромной каверной в поисках газа.

Влияющие факторы (человеческий фактор)

Масштабы последствии

По порядку отражения в документах Регистрируемые

Учитываемые

По степени тяжести последствий

Простые

Сложные

По категории

1 категория (полное разрушение)

2 категория (частичное разрушение)

По объекту аварии

Аварии с элементами БК

Аварии из-за неудачного цементирования

Обрыв бурильных труб

Аварии с забойными двигателями

Аварии с долотами

Падение в скважину посторонних предметов

Прихваты БК и ОК

Прочие аварии

Аварии с ОК и элементами ее оснастки

Аварии с элементами колонны и обрывы бурильных труб

- Поломки элементов бурильной колонны по телу, сварному шву, в резьбе.
- Падение элементов колонны в результате развинчивания в резьбе, поломки спускоподъемного оборудования или инструмента, обрыва талевого каната.

Аварии с породоразрушающим инструментом

- Оставление в скважине долота, бурильной головки, расширителя.
- Поломка породоразрушающего инструмента и оставление его элементов в скважине.
- Падение долота в скважину.

Аварии с забойными двигателями

 Оставление турбобура, винтового двигателя или электробура в скважине вследствие поломок или разъединения в резьбах.

Аварии с обсадными колоннами

- Падение колонны в скважину.
- Обрыв колонны по телу или резьбовому соединению.
- Разрыв по телу трубы.
- Смятие колонны.
- Повреждении труб при разбуривании цементного стакана, стоп-кольца, обратного клапана.

Аварии при цементировании обсадных колонн

- Недоподъем цементного раствора в затрубном пространстве до проектной величины.
- Оставление цементного раствора внутри колонны обсадных труб.
- Негерметичность колонны.

Аварии при геофизических исследованиях

- Обрыв приборов.
- Обрыв грузов.
- Обрыв кабеля (каната).
- Прихват приборов.
- Прихват кабеля.
- Перехлест кабеля при спуске.

Прихваты

- Дифференциальные прихваты.
- Прихваты бурильных колонн и элементов их оснастки.
- Прихваты обсадных колонн.

Прочие аварии

- Перекос оснований.
- Падение вышек (мачт).
- Падение талевой системы.
- Пожары.
- Взрывы.
- Фонтаны.

Осложнения в процессе бурения. Причины возникновения. Способы борьбы и профилактика.

Тема №1 Классификация осложнений в бурении

Классификация осложнений

Осложнения

Газонефтеводопроявления

Поглощения **бурового раствора**

Неустойчивость стенок скважины Осыпи и обвалы

Ползучесть

Желобообразование

Растворение и растепление пород

Тема №2 Неустойчивость стенок скважины

Осыпи и обвалы

Возникают при прохождении уплотненных глин, аргиллитов или глинистых сланцев.

Причины

- Увлажнение глин буровым раствором или его фильтратом.
- Набухание горных пород, выпучивание и последующее осыпание.
- Механическое воздействие инструмента на стенки скважины (небольшие осыпи и обвалы).
- Тектонические.

Признаки

- Резкое повышение давления на выкиде буровых насосов.
- Обильный вынос кусков породы.
- Интенсивное кавернообразование и недохождение бурильной колонны до забоя без промывки и проработки.
- Затяжки и прихваты бурильной колонны.
- Иногда выделение газа.

Осыпи и обвалы

Предупреждение и ликвидация

- **1)** бурение в зоне возможных обвалов (осыпей) с промывкой буровым раствором, имеющим минимальный показатель фильтрации и максимально возможно высокую плотность;
- 2) правильная организация работ, обеспечивающая высокие механические скорости проходки;
- 3) выполнение следующих *рекомендаций*:
- а) бурить скважины по возможности меньшего диаметра;
- б) бурить от башмака (нижней части) предыдущей колонны до башмака последующей колонны долотами одного размера;
- **в)** поддерживать скорость восходящего потока в затрубном пространстве не менее 1,5 м/с;
- г) подавать бурильную колонну на забой плавно;
- д) избегать значительных колебаний плотности бурового раствора;
- **е)** перед подъемом бурильной колонны утяжелять раствор, доводя его плотность до необходимой, если в процессе бурения произошло ее снижение; **ж)** не допускать длительного пребывания бурильной колонны без движения.

Набухание горных пород

Возникают при прохождении уплотненных глин, аргиллитов или глинистых сланцев. Особенно там, где высокое содержание монтмориллонита.

Причины

- Увлажнение глин буровым раствором или его фильтратом.
- Набухание горных пород, выпучивание и последующее осыпание.

Признаки

- Повышение давления на выкиде буровых насосов.
- Затяжки и прихваты бурильной колонны.

Набухание горных пород Предупреждение и ликвидация

- 1) бурение в зоне возможных сужений с промывкой утяжеленными буровыми растворами, в фильтрате которых содержатся химические вещества, способствующие увеличению предельного напряжения сдвига, а также степени и давления набухания;
- 2) правильная организация работ, обеспечивающая высокие механические скорости проходки;
- 3) после приготовления глинистого раствора, отвечающего требованиям, указанным в п.
- 1, следует заполнить им скважину и выждать некоторое время, необходимое для протекания физико-химических процессов. Это нужно делать потому, что процесс бурения связан с резкими колебаниями давления при спуско-подъемных операциях;
- 4) выполнение следующих рекомендаций:
- **а)** бурить от башмака (нижней части) предыдущей колонны до башмака последующей колонны долотами одного размера;
- **в)** поддерживать скорость восходящего потока в затрубном пространстве не менее 1,5 м/с;
- **г)** подавать бурильную колонну на забой плавно;
- д) избегать значительных колебаний плотности бурового раствора;
- е) перед подъемом бурильной колонны утяжелять раствор, доводя его плотность до необходимой, если в процессе бурения произошло ее снижение;
- ж) не допускать длительного пребывания бурильной колонны без движения.

Ползучесть горных пород

Возникают при прохождении высокопластичных пород (глин, глинистых сланцев, песчанистых глин, аргиллитов, ангидрита или соляных пород), склонных под действием возникающих напряжений деформироваться со временем, т. е. ползти и выпучиваться в ствол скважины.

Причины

- Недостаточное противодействие на пласт со стороны скважины.
- Давление кровли и подошвы на пласт с последующим его выдавливанием в скважину.

Признаки

- Затяжки и посадки бурильной колонны.
- Недохождение бурильной колонны до забоя.
- Прихват, смятие бурильной или обсадной колонн.

Позучесть горных пород Предупреждение и ликвидация

- **1)** разбуривание отложений, представленных породами, склонными к ползучести, с промывкой утяжеленными глинистыми растворами;
- 2) правильная организация работ, обеспечивающая высокие механические скорости проходки;
- **3)** использование при бурении вертикальных скважин такой компоновки бурильной, колонны, при которой искривление скважин сводится к нулю;
- **4)** подъем при цементировании обсадных колонн цементного раствора в затрубном пространстве на 50-100 м и выше отложений, которые представлены породами, склонными к ползучести (вытеканию);
- **5)** при креплении скважины обсадной колонной в интервале пород, склонных к ползучести, установка трубы с повышенной толщиной стенки для предотвращения смятия обсадной колонны.

Желобообразование

Возникают при прохождении любых пород, кроме очень крепких и крепких.

Причины

- Большие углы перегиба ствола скважины.
- Большой вес единицы длины бурильной колонны.
- Большая площадь контакта бурильных труб с горной породой.

Признаки

- Затяжки и посадки бурильной и обсадных колонн.
- Прихваты и заклинивание бурильных и обсадных колонн.

Опыт бурения показал, что желобообразование происходит не сразу, а постепенно с ростом числа рейсов бурильного инструмента. В условиях желобообразования опасность заклинивания возрастает, если диаметр бурильных труб превышает ширину желоба в 1,14-1,2 раза.

Желобообразование Предупреждение и ликвидация

- **1)** использование при бурении вертикальных скважин такой компоновки бурильной колонны, при которой искривление скважин сводится к минимуму. Недопущение различных азимутальных изменений;
- 2) стремление к максимальной проходке на долото;
- 3) использование предохранительных резиновых колец;
- **4)** при прохождении уплотненных глин, аргиллитов, глинистых сланцев в целях предупреждения желобообразования, которое может предшествовать обвалам (осыпям), соблюдение всех рекомендаций, перечисленных как меры предупреждения обвалов (осыпей);
- **5)** при бурении наклонно-направленных скважин для предупреждения заклинивания труб в желобах соблюдение отношения наружного диаметра спускаемых труб к диаметру желоба не менее **1,35-1,40**;
- 6) колонну бурильных труб следует поднимать на пониженной скорости, чтобы не допустить сильного заклинивания;
- 7) при заклинивании трубы надо сбивать вниз.

Желоба ликвидируют проработками ствола скважины в интервале их расположения. Одной из распространенных мер ликвидации образовавшихся желобов является взрыв шнуровых торпед (ТДШ).

Растворение и растепление

Возникают при прохождении соляных пород (растворение) и многолетнемерзлых (растепление).

Причины

- Неправильный выбор рецептуры бурового раствора и технологии проходки интервала.

 Признаки
- Интенсивное кавернообразование.
- «Течение» пластов (для многолетнемерзлых пород).

Предупреждение и ликвидация

- **1)** Полное насыщение бурового раствора солью (соль, содержащаяся в растворе, должна быть такой же, как соль, из которой сложены стенки скважины).
- **2)** При небольшой мощности неоднородных солей основной мерой предупреждения их растворения является максимальное форсирование режима бурения с последующим спуском колонны и ее цементирование.
- **3)** При большой мощности неоднородных солей наиболее надежное средство предотвращения их интенсивного растворения бурение с применением безводных буровых растворов.
- 4) Использование термокейсов (для ММП).

Тема №3

Поглощения буровых растворов

Поглощения бурового раствора Причины

- Превышение давления столба жидкости;
- Наличие поглощающего горизонта.

Признаки

• Частичное или полное отсутствие выхода раствора на устье скважины.

Факторы, влияющие на возникновение поглощений

- **1.Геологические факторы** тип поглощающего пласта, его мощность и глубина залегания, недостаточность сопротивления пород гидравлическому разрыву, пластовое давление и характеристика пластовой жидкости, а также наличие других сопутствующих осложнений.
- **2.Технологические факторы** количество и качество подаваемого в скважину бурового раствора, способ бурения, скорость проведения спускоподъемных операций и др. К этой группе относятся такие факторы, как техническая оснащенность и организация процесса бурения.

Поглощения бурового раствора

Типы поглощений

- Малой интенсивности 10 15 м³/ч;
- Средней интенсивности 40 60 м³/ч;
- Высокоинтенсивный более 60 м³/ч.

Предупреждение и ликвидация

- Пакеры различных конструкций, которые герметизируют и разобщают затрубное пространство с целью:
- а) предотвращения разбавления тампонирующих смесей;
- б) возможности применения БСС с небольшими сроками схватывания;
- в) задавливания тампонирующих смесей в поглощающие каналы;
- *г)* определения места расположения пласта, поглощающего жидкость, методом последовательных опрессовок ствола скважины;
- д) определения возможности замены воды глинистым раствором (особенно при бурении на площадях с повышенным пластовым давлением) при создании различных перепадов давления на пласты, поглощающие жидкость.
- Бурение без выхода раствора на поверхность.
- Использование наполнителей.
- Использование тампонажных смесей, смол, битумов.
- Профильные перекрыватели, технические обсадные колонны.
- Торпеды, направленные взрывы в скважине.

Тема №4 Газонефтеводопроявления

Газонефтеводопроявления

Причины

- Наличие в разрезе флюидонасыщенного пласта (вода, нефть, газ).
- Несоблюдение в системе «скважина-пласт» требуемого превышения гидростатического давления.

Признаки

- Выход на поверхность при восстановлении циркуляции пачек глинистого раствора, насыщенного газом.
- Кипение в скважине при ограниченном поступлении из пластов газа, что может наблюдаться в случае незначительных величин вязкости и статического напряжения сдвига глинистого раствора.
- Слабый перелив раствора из скважины.
- Повышение уровня жидкости в приемных емкостях буровых насосов (без добавления жидкости в циркуляционную систему).
- Появление газа по показаниям газокаротажной станции.

Поглощения бурового раствора Предупреждение и ликвидация

Основные мероприятия:

- Утяжеление бурового раствора для увеличения гидростатического давления на пласт.
- Герметизация устья скважины.

Дополнительно:

- **1.** Не вскрывать пласты, которые могут вызвать проявления, без предварительного спуска колонны обсадных труб, предусмотренных ГТН.
- 2. Долив скважины при подъеме бурильной колонны должен носить не периодический, а непрерывный характер.
- **3.** Цемент за кондуктором поднимать до устья скважины, чтобы обеспечить надежную герметизацию устья при борьбе с газо-, нефте- и водопроявлениями.
- **4.** При снижении плотности глинистого раствора более чем на 20 кг/м³ (0,02 г/см³) необходимо принимать немедленные меры по его восстановлению.
- **5.** Необходимо иметь запас раствора. На скважинах, в которых предполагается вскрывать зоны с возможными газонефтеводопроявлениямидо начала бурения должна быть обеспечена емкостями с запасным буровым раствором.

Поглощения бурового раствора Предупреждение и ликвидация

- **6.** Так как колебания давления при спускоподъемных операциях зависят от зазора между бурильной колонной и стенками .скважины, следует избегать применения компоновок нижней части бурильной колонны с малыми зазорами.
- **7.** Колонну бурильных труб необходимо поднимать только после тщательной промывки скважины при параметрах глинистого раствора, соответствующих установленным ГТН. Промывать скважину следует при условии создания максимально возможной подачи насосов и при вращении бурильной колонны.
- **8.** Если при подъеме бурильных труб уровень глинистого раствора в затрубном пространстве не снижается, то это указывает на возникновение эффекта поршневания. В подобном случае бурильную колонну необходимо спустить ниже интервала проявления, промыть скважину и только после этого приступить к подъему инструмента.
- 9. Перед вскрытием объектов с высоким пластовым давлением, где возможно проявление, под ведущей бурильной трубой устанавливают обратный клапан.

Аварии в бурении. Причины возникновения. Способы борьбы и профилактика (ч.1).

Тема №1 Классификация аварий в бурении

Классификация аварий

По объекту аварии

Аварии с элементами БК

Аварии из-за неудачного цементирования

Обрыв бурильных труб

Аварии с забойными двигателями

Аварии с долотами

Падение в скважину посторонних предметов

Прихваты БК и ОК

Прочие аварии

Аварии с ОК и элементами ее оснастки

Тема №2

Аварии с бурильной колонной и ее элементами

Общие причины возникновения аварий

До 95% всех аварий возникает по вине исполнителей в результате нарушения технологии бурения, условий эксплуатации оборудования и инструмента.

Около 3-5% аварий возникает из-за заводского брака используемого инструмента.

Небольшая часть аварий возникает из-за низкого качества технических проектов.

Аварии с бурильной колонной Характерные аварии

- **Ведущие трубы:** поломка по телу; срыв трубной резьбы.
- Бурильные трубы: поломка в концевой высадке; по телу; в зоне сварного шва; срыв трубной резьбы.
- **Бурильные замки**: срыв замковой резьбы; поломка по телу.
- УБТ и переводники: срыв замковой резьбы; поломка по телу в зоне замковой резьбы.
- Соединительные муфты: поломка по телу.
- Падение части колонны бурильных труб в скважину.

Причины поломок бурильной колонный

Основная причина поломок элементов бурильной колонны — усталостное разрушение металла под действием переменных по знаку и величине нагрузок. Поломка колонны бурильных труб возможна в результате чрезмерных нагрузок на нее при ликвидации аварийных ситуаций.

Усталостному разрушению металла способствуют

- ·дефекты материала труб (микротрещины, включения, расслоения);
- •вмятины, царапины, надрезы на трубах;
- •конструктивные недостатки сборных бурильных труб;
- •резкие переходы в размерах поперечного сечения колонны;
- •колебания колонны (продольные, крутильные, в т.ч. резонансные);
- •наличие каверн в скважине;
- •абразивность пород, переслаивание пород по твердости;
- •искривление скважины.

Причины поломок бурильной колонный

Усталостному разрушению металла способствуют

- малое количество УБТ;
- •несоответствие диаметра труб диаметру скважины;
- •несоответствие типа долота разбуриваемым породам;
- •химическая агрессия бурового раствора и жидкостей ванн;
- •эксцентричность вышки, ротора относительно скважины.

Причины срыва резьб бурильной колонны

- Чрезмерный износ резьбы из-за: плохой смазки; низкого качества изготовления; эксцентричности стола ротора и вышки.
- Промыв резьбы.

Причины падения бурильной колонны в скважину

- Развинчивание замковых резьб в процессе спуска инструмента.
- Посадки инструмента на уступы в процессе спуска.
- Резкие посадки инструмента на ротор.
- Неисправность тормозной системы лебедки.
- Неисправность спускоподъемного инструмента.
- Несоответствие грузоподъемности оборудования и инструмента весу колонны бурильных труб.

Предупреждение аварий с бурильной колонной Правила транспортировки труб

- Перевозка труб допускается только специальным транспортом (трубовозами).
- Длина выступающего конца труб должна быть не более 1 м.
- Ведущие трубы могут перевозиться только в обсадных трубах.
- Резьбы труб должны быть защищены предохранительными кольцами.
- Запрещается сбрасывание труб с транспортных средств.
- Укладка труб производиться комплектами с деревянными прокладками, при этом необходимо исключить прогибы и удары.

Предупреждение аварий с бурильной колонной

Подготовка труб к эксплуатации

- Чистка резьб труб, и их контроль калибрами.
- Дефектоскопия труб.
- Толщинометрия.
- Определение фактической кривизны.
- Шаблонирование.
- Установка протекторов (при роторном способе бурения).
- Сборные трубы комплектуются селективно и только на трубных базах.
- Опрессовка труб на полуторное рабочее давление, но не менее 30 МПа.
- Разница в длине свеч должна быть не более 0,75 м.
- На каждый комплект труб составляется паспорт.

Предупреждение аварий с бурильной колонной в процессе эксплуатации

- Горизонтальность стола ротора.
- Центровка фонаря относительно скважины.
- Смазка резьб перед свинчиванием.
- Докрепление резьб с рекомендованными моментами свинчивания.
- Не допускаются резкие торможения и удары колонны о ротор.
- Через 10-20 СПО менять рабочие соединения на нерабочие.
- Через **800 часов** работы опрессовка колонн на **1,5 рабочих давления**, но не менее **30 МПа**.
- Дефектоскопия труб с периодичностью от **20** до **90 суток** в зависимости от типа труб и условий бурения.
- Определение величины износа труб скобами. Для стальных труб раз в месяц.
- Проверка резьб калибрами раз в месяц.
- Соответствие класса труб по износу условиям бурения.
- Для легкосплавных труб водородный показатель бурового раствора должен быть меньше 11.

Признаки обрыва колонны бурильных труб

- Падение давления бурового раствора на стояке.
- . Снижение нагрузки на крюке.
- . Повышение частоты вращения ротора.
- Уменьшение силы тока в электродвигателе привода ротора.
- В глубоких скважинах (>2500 м) снижение температуры бурового раствора на устье.
- Резкое перемещение колонны.

Тема №3

Аварии с породоразрушающим инструментом

Аварии с породоразрушающим инструментом Характерные аварии

- Отвинчивание долот.
- Поломка долот во время спуска инструмента.
- Износ опоры шарошечного долота и оставление шарошек на забое.
- Заклинивание шарошек на опоре долота.
- Скол твердосплавных штырей шарошечных долот.
- Выпадение алмазов.
- Поломка лопастей долот режущего типа.

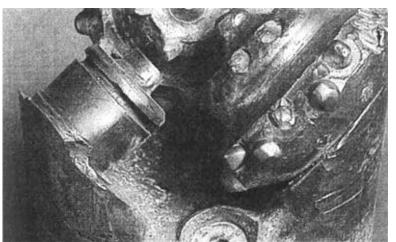
Причины аварий с породоразрушающим инструментом

- Передержка долота на забое.
- Превышение основной нагрузки допустимой на долото.
- Удары долотом по забою, уступам, вывалам гонкой породы, в местах сужения ствола
- Несоответствие типа долота буримым горным породам.
- Наличие металла на забое.
- Низкое качество изготовления долот.
- · Тяжелые условия работы.

Признаки аварий с породоразрушающим инструментом

- Резкое снижение механической скорости бурения.
- Повышенная вибрация инструмента, посторонние шумы.
- Увеличение крутящего момента на роторе.
- Увеличение силы тока в цепи двигателя ротора.

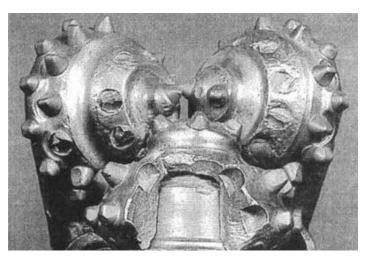
Предупреждение аварий


Инструмент необходимо поднять из скважины в случае, если:

•при бурении шарошечными долотами с забойными двигателями механическая скорость проходки снизилась на **50%**;

•при бурении режущими и истирающими долотами механическая скорость снизилась в

2-2,5 раза от первоначальной.



- Соответствие типа долота буримым породам.
- Соответствие типа долота способу бурения.
- Соответствие диаметра долота диаметру УБТ, бурильных труб.
- Присоединительные резьбы должны иметь предохранительные кольца.
- Запрещается транспортировка и хранение долот навалом, их сбрасывание с транспортных средств.
- Периодическая очистка забоя скважины от металла.

Подготовка долота к спуску

Перед спуском долота необходимо проверить:

- наличие гидромониторных насадок и надежность их крепления;
- чистоту промывочных каналов;
- свободное вращение шарошек у долот с опорами типа В;
- у долот типа ГНУ и ГАУ надежность фиксации крышек компенсаторов, чистоту каналов в крышках, отсутствие подтеков смазки;
- диаметр долота шаблоном;
- очистить резьбу, нанести смазку.

Навинчивание долота производить с помощью спецустройства, необходимо производить докрепление резьбы машинными ключами

Правила спуска инструмента в скважину

- Замедление спуска инструмента в местах изменения диаметра скважины, сужений, каверн, участках искусственного искривления.
- Не допускаются удары долота при спуске более **30-40 кН**.
- При посадках инструмента поднять его на **10-15 м**, включить промывку и проработать интервал с осевой нагрузкой не более **30 кH**, для долот типа ГНУ и ГАУ без вращения!
- За 10-15 м от забоя включить промывку и промыть скважину без вращения долота.

Правила приработки (обкатки) долот на забое

Роторное бурение и бурение ВЗД

- Открытые опоры (тип В)
- Время приработки **15-30 мин** при начальной осевой нагрузке **20-30 кН** с постепенным увеличением до требуемой.
- Долота серии ГНУ и ГАУ

Долото ставиться на забой без вращения, создается осевая нагрузка от **30** до **120 кН** в зависимости от диаметра долота и включается вращение с минимальной частотой.

В течении **30-40 мин** нагрузка и частота вращения повышается до требуемых.

Турбинное бурение

Время приработки 3-5 мин с постепенным увеличением осевой нагрузки.

Правила эксплуатации

- В процессе бурения необходимо обеспечить плавность подачи долота.
- Через один час бурения производить отрыв долота от забоя на 10-15 м. При появлении затяжек отрыв от забоя производить через 15 мин.
- При бурении с забойными двигателями через **15-20 мин** Производить проворачивание бурильной колонны ротором.
- При подъеме инструмента уменьшать скорость подъема в местах возможных сужений и у башмака обсадной колонны.

Предупреждение аварий с породоразрушающим инструментом Алмазные долота и долота ИСМ

- Тщательная очистка забоя скважины и стенок от металла.
- Соответствие матрицы долота буримым породам.
- Износ долота по диаметру не должен превышать 3 мм.
- Обязательно применение калибраторов.
- Замедленный спуск инструмента в местах сужения ствола, каверн, башмака обсадной колонны.
- Запрещается вращение долота в обсадной колонне.
- Проработка ствола скважины в местах сужения алмазными долотами запрещается.
- При бурении с забойными двигателями необходимо проворачивать колонну бурильных труб ротором через **15-20 мин**.
- Отрыв долота от забоя производить через 30-40 мин.
- Контрольный подъем долота до башмака обсадной колонны через 72 часа бурения.

Тема №4 Аварии с забойными двигателями

Аварии с забойными двигателями Характерные аварии

- Слом корпуса или вала в зоне резьбы, так как нагрузки на резьбы в забойных двигателях существенно выше, чем в бурильной колонне.
- Срыв резьб корпуса или вала.
- Срыв резьбы у переводника на долото.
- Отвинчивание забойного двигателя от колонны бурильных труб.
- Заклинивание ротора относительно статора шламом, посторонними предметами.

Причины аварий

- Недокрепление резьб забойного двигателя.
- Нарушение правил эксплуатации.
- Высокое содержание твердой фазы в буровом растворе и посторонних предметов.
- Наличие дефектов в деталях забойного двигателя (вмятины, трещины, надрезы, погнутость).
- Отсутствие неразрушающего контроля качества деталей (дефектоскопия).

Признаки аварий

- . Прекращение углубки скважины.
- Падение давления бурового раствора.

Аварии с забойными двигателями Предупреждение аварий

- Транспортировка забойных двигателей допускается только с опорой не менее, чем в трех точках, двигатели диаметром 195 мм и менее транспортируются только в обсадных трубах.
- Соответствие диаметра забойного двигателя диаметру долота. 215,9 195;
 190,5 172.
- Свинчивание секций производить ключами с моментомерами до моментов, указанных в технических условиях эксплуатации.
- После свинчивания на резьбах наносить метки. В процессе эксплуатации контролировать их положение.
- Под ведущей трубой устанавливать фильтр длиной **1,5 2 м** с диаметром отверстий **5-6 мм**.

Аварии с забойными двигателями Предупреждение аварий

- Износ корпуса двигателя по диаметру допускается не более 1 мм. Замер производить скобой перед спуском.
- Осевой люфт для шпиндельных турбобуров допускается не более **5 мм**. Замер производить перед каждым спуском.
- Перед спуском произвести опробование на устье плавность запуска и остановки. Контролировать герметичность резьб.
- При спуске исключить удары двигателя о забой, уступы.
- При запуске и остановке двигатель должен быть поднят над забоем на 10-15 м.
- Осевая нагрузка после запуска двигателя повышается постепенно от **20-30 кН** до расчетной.
- При ремонте двигателей производить дефектоскопию валов и корпусов.

